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Abstract

Now that regional circulation patterns can be reasonably well reproduced by ocean
circulation models, significant effort is being directed toward incorporating complex
food webs into these models, many of which now routinely include multiple phyto-
plankton (P) and zooplankton (Z) compartments. This study quantitatively assesses
how the number of phytoplankton and zooplankton compartments affects the ability of
a lower trophic level ecosystem model to reproduce and predict observed patterns in
surface chlorophyll and particulate organic carbon. Five ecosystem model variants are
implemented in a one-dimensional assimilative (variational adjoint) model testbed in
the Mid-Atlantic Bight. The five models are identical except for variations in the level
of complexity included in the lower trophic levels, which range from a simple 1P1Z
food web to a considerably more complex 3P2Z food web. The five models assimilated
satellite-derived chlorophyll and particulate organic carbon concentrations at four conti-
nental shelf sites, and the resulting optimal parameters were tested at five independent
sites in a cross-validation experiment. Although all five models showed improvements
in model-data misfits after assimilation, overall the moderately complex 2P2Z model
was associated with the highest model skill. Additional experiments were conducted
in which 20 % random noise was added to the satellite data prior to assimilation. The
1P and 2P models successfully reproduced nearly identical optimal parameters re-
gardless of whether or not noise was added to the assimilated data, suggesting that
random noise inherent in satellite-derived data does not pose a significant problem to
the assimilation of satellite data into these models. On the contrary, the most complex
model tested (3P2Z) was sensitive to the level of random noise added to the data prior
to assimilation, highlighting the potential danger of overtuning inherent in such complex
models.
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1 Introduction

In spite of recent advances in marine ecosystem modeling that now allow for the incor-
poration of multiple plankton functional types and/or size classes (e.g., Follows et al.,
2007; Kishi et al., 2007; Salihoglu and Hofmann, 2007), it remains ambiguous whether
models with additional plankton compartments necessarily perform better than mod-
els characterized by relatively simple structures. Although the use of a single plankton
compartment may fail to resolve key processes in a given ecosystem (e.g., Ward et al.,
2013), the inclusion of additional complexity in plankton structure comes with a sub-
stantial cost: significant uncertainties will inevitably be associated with the additional
state variables and required parameters (Anderson, 2005; Flynn, 2005). Hence these
trade-offs in model structure selection pose a challenging question: how does one de-
termine how many phytoplankton and zooplankton compartments need to be included
in a given application of a lower trophic model?

Multiple model comparison studies have helped improve our understanding of the
trade-offs of increasing ecosystem model complexity, yet many of these studies have
not directly isolated the effects of increasing plankton complexity (e.g., Baird and
Suthers, 2010; Costanza and Sklar, 1985; Fulton et al., 2003; Hannah et al., 2010;
Paudel and Jawitz, 2012; Raick et al., 2006). For example, a recent community data as-
similative modeling comparison exercise (Friedrichs et al., 2007) revealed that ecosys-
tem models with multiple phytoplankton (P) state variables were quantitatively more
skillful (in terms of reproducing observations of chlorophyll, primary production, ex-
port and nitrate at multiple sites) than models with single P compartments. However,
the twelve models participating in the Friedrichs et al. (2007) comparison study varied
in many different ways, including nutrient limitations, variable elemental compositions
and zooplankton (Z) state variables, making it difficult to determine why certain mod-
els performed better than others. Lehmann et al. (2009) compared two models with
different numbers of plankton compartments (1P1Z with 2P1Z) and concluded that
the additional phytoplankton state variable improved model skill. However, in this case
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it was not completely clear whether the improvement was due to the additional phy-
toplankton compartment or was caused by other differences in the structures of the
two models such as the variable Carbon : Nitrogen ratio included in the more com-
plex model. Likewise, Hashioka et al. (2012) evaluated the role of functional groups in
four global ecosystem models. Although differences in model performance were found,
these were largely attributed to variations in underlying governing mechanisms, and not
necessarily to differences in the numbers and specific characteristics of each model’s
phytoplankton functional types.

In contrast to these previous efforts that compared models that varied in many
ways based on different assumptions made by different investigators, Bagniewski
et al. (2011) compared the relative skill of three models that differed only in their for-
mulations for fast-sinking diatom aggregates and cysts. Although none of their models
could be rejected based on misfit with available observations, the inclusion of export by
diatom aggregation was found to be a process that significantly improved model-data
fit. In the study presented here, the focus is on the inter-model differences induced
solely by variations in the assumed phytoplankton and zooplankton structures. In other
words, the five ecosystem models tested in this study are identical except for varia-
tions in the level of complexity included in the P and Z compartments, and range from
a simple 1P1Z to a considerably more complex 3P2Z food web. To further simplify the
comparison, functional types or community species were not considered, but instead,
the multiple P and Z only account for size class differences.

Here relative model skill is defined as how well the models represent truth over
a specified range of conditions, or more practically, how well the models fit the data
(Jolliff et al., 2009; Stow et al., 2009; Friedrichs et al., 2009). Since ecosystem model
performance is very sensitive to the arbitrary choice of ecological parameter values
(Rykiel, 1996), it is critical to rigorously optimize the parameter values of individual
models prior to comparing their relative skill, in order to insure that innate differences
in model structures are being compared, rather than the degree of subjective tuning
(Friedrichs et al., 2006). Thus in this analysis each of the five models was parame-
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terized in a 1-D assimilative framework, and parameters were optimized through the
assimilation of satellite-derived data. In this way, all five models were compared at their
optimum skill. In addition, because all models were forced with identical physics, the
difference in model performance was only a function of the varying P and Z food web
structures.

The objective of this study is not to identify a model with the highest possible skill in
this particular region of the ocean, but rather the goal is to determine how varying the
number of plankton variables within a given model affects model performance. In other
words, this study examines how model skill, specifically skill in reproducing surface
chlorophyll and particulate organic carbon concentrations, is affected by manipulating
the complexity of the planktonic food web without altering other underlying formulations
and assumptions in the model.

2 Methods
2.1 Ecosystem models

In this study five nitrogen-based marine ecosystem models were compared. All are
nitrogen-phytoplankton-zooplankton-detritus (NPZD) type models incorporating identi-
cal biogeochemical processes (as described in Fennel et al., 2006), with the only dif-
ference between models being the number of phytoplankton and zooplankton groups:
1P1Z, 2P1Z, 2P2Z and 3P1Z and 3P2Z food webs. The most complex 3P2Z model
includes three P compartments (pico-, nano- and micro-phytoplankton) with three cor-
responding chlorophyll state variables and two Z compartments (micro- and meso-
zooplankton). In the simplest 1P1Z model, the single P and Z compartments represent
an average of three phytoplankton size classes and micro-zooplankton, respectively. In
the 2P models, one phytoplankton compartment represents the micro-phytoplankton
and one represents an average of pico- plus nano-phytoplankton. The key param-
eters that differentiate P size classes include maximum chlorophyll-to-carbon ratios,
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nutrient half-saturation constants, maximum growth rates and sinking rates, whereas
Z compartments vary in grazing rates and food preference. Both micro- and meso-
zooplankton were assumed to graze on all phytoplankton size classes but with varying
grazing rates. This allowed micro-zooplankton to prefer pico- and nano-phytoplankton
whereas meso-zooplankton preferred micro-phytoplankton. A summarized list of criti-
cal parameters for the various plankton state variables is provided in Table 1 and the
biological equations are provided in the Appendix.

Each of the five marine ecosystem models were embedded in a 1-D (vertical) physi-
cal model that contains standard parameterizations for vertical advection, diffusion and
sinking particles that have been thoroughly described in a number of other 1-D mod-
eling studies (Friedrichs et al., 2007; Ward et al., 2010; Xiao and Friedrichs, 2014).
Initial and bottom boundary conditions for the model state variables were set the same
as in Xiao and Friedrichs (2014), i.e., provided by a corresponding three-dimensional
(3-D) 1P1Z model implementation (Hofmann et al., 2008, 2011). Models with two size
classes were initialized as one half of the 3-D 1P1Z concentrations, and models with
three size classes were initialized as one-third of these concentrations. Sensitivity ex-
periments demonstrated that the 1-D models were not sensitive to these initial size
fractionation ratios. In all experiments, carbon was derived by converting nitrogen (N)
to carbon (C) via a constant Redfield C : N ratio and model estimates of particulate or-
ganic carbon (POC) were computed as the sum of all phytoplankton, zooplankton and
detritus. All five models were run from 1 January 2004 through 31 December 2004 with
a time step of 1 h.

2.2 Satellite-derived data

Based on the results of Xiao and Friedrichs (2014), three types of data were derived

from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and assimilated into the

five models described above (Table 2): size-fractionated chlorophyll a (Pan et al., 2010),

total chlorophyll a (computed as the sum of the size-fractionated chlorophyll) and par-

ticulate organic carbon (Stramska and Stramski, 2005). Although these satellite data
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were all derived using empirical or semi-analytical algorithms, they have demonstrated
considerable success in their agreement with in situ data. The uncertainty associated
with these size-differentiated chlorophyll and POC concentrations have been estimated
to be 35 % (Pan et al., 2010; Stramska and Stramski, 2005).

Satellite-derived size-fractionated chlorophyll consists of three types of size-
fractionated chlorophyll: large chlorophyll (ChiL), medium chlorophyll (ChIM) and small
chlorophyll (ChlIS), representing chlorophyll produced by micro-phytoplankton, nano-
phytoplankton and pico-phytoplankton, respectively. When comparing the models with
two phytoplankton components to these satellite data, the chlorophyll attributed to the
large phytoplankton component was compared to ChiL, and the chlorophyll attributed to
the small phytoplankton component was compared to the sum of ChIS + ChiIM. When
comparing the model with one phytoplankton component to these satellite data, the
modeled chlorophyll was compared to the sum of all three types of chlorophyll. It is
worth stressing that satellite measurements represent the first optical depth, which ac-
counts for ~ 90 % of the light exiting the ocean and towards space. In the MAB, the
depth range for this is from ~ 1 m within bay mouths/plumes to 20 m offshore, thus the
satellite data integrates the ocean’s surface layer and generally beyond the sea surface
itself.

2.3 Data assimilation framework

The specifics of the optimization implementation are well documented in Xiao and
Friedrichs (2014), and thus only a brief description of the key properties of the vari-
ational adjoint data assimilative framework are provided here.

The variational adjoint method is a nonlinear, weighted least-squares optimization
method that minimizes the misfit between the model estimates and the observational
data by optimizing a subset of model parameters (e.g., Lawson et al., 1995, 1996). The
choice of parameters for optimization depends strongly on the data available for opti-
mization. When size differentiated chlorophyll and particulate organic carbon data are
available for assimilation, Xiao and Friedrichs (2014) determined that successful assim-
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ilation results are obtained as long as data from multiple sites are assimilated, and the
subset of parameters to be optimized include: maximum chlorophyll : carbon (Chl : C)
ratios, maximum phytoplankton growth rates and zooplankton basal metabolism rates.
Because each optimized parameter is size specific, i.e. each phytoplankton size class
has a distinct Chl : C ratio and growth rate, and each zooplankton size class has a dis-
tinct basal metabolism rate (Table 1), the number of optimized parameters increases
with increasing model complexity. For the five models tested here, 3, 5, 6, 7, and 8
parameters are optimized, respectively.

In this methodology the model-data misfit, otherwise known as the “cost function”
(), is minimized, where:

Nm

Z z Z(ajkm_éjkm)z (1)

k1m1Nkm km/1

where a represent the modeled equivalents to the observations (&), M is the number of
data types where M = 2, 3, or 4 depending on the number of P size classes resolved
by the model, K is the number of sites, N, is the number of observations at site k
for data type m, and o,, is the standard deviation of the N,,, observations (Table 2).
In this way, the cost function provides an estimate of the ratio between the model-data
differences and the differences between the data and the mean of the data, i.e. a,fm.

After the cost function is computed from an a priori forward model run, the adjoint
code (Giering and Kaminski, 1998) computes the gradients of the cost function and
passes the information to an optimization procedure (Gilbert and Lemaréchal, 1989),
which determines how each optimized parameter value should be modified in order to
reduce the magnitude of the cost function. The new parameter values are then used
in another forward model run, the new cost function is computed, and the optimiza-
tion procedure is repeated. These iterations continue until the specified convergence
criterion is satisfied.

Following the recommendations of Xiao and Friedrichs (2014), both particulate or-
ganic carbon and size-differentiated chlorophyll were assimilated. Although this previ-
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30

ous study found that POC estimates were not significantly improved as a result of the
assimilation, the POC assimilation played a critical role in preventing significant deteri-
oration of other state variables (zooplankton, detritus) that are included as components
of POC. Thus the cost that was minimized by the optimization routine consists of the
sum of these two components:

Size_cost = SizeChl_cost + POC_cost (2)

where SizeChl_cost represents that portion of the cost due to the model-data misfits
of size differentiated chlorophyll, and POC_cost represents the portion of the cost due
to the POC model-data misfits. For the 1P model, SizeChl_cost is computed for total
chlorophyll (ChIS + ChIM + ChIL) and thus M =2 in Eq. (1) (i.e. one data type is total
ChIS + ChIM + ChIL and one is POC.) For the 2P models, SizeChl_cost is computed
as the sum of two separate components: ChlIS + ChiIM and ChiL. In this case M =3
(data types are ChIS + ChIM, ChIL and POC.) Finally, for the 3P models, SizeChl_cost
includes misfits for ChlS, ChIM and ChIL separately, and four data types are assimilated
(M = 4; ChIS, ChIM, ChIL, and POC.)

As a result of the nonlinearities in the cost function formulation (Eq. 1), SizeChl_cost
is not comparable across models with different numbers of phytoplankton variables,
and thus Size_cost is not an appropriate metric for comparing the relative skill of all
five models. Thus it is also critical to compute and compare the total cost (Total_cost)
from the misfits in total chlorophyll and POC for the five models:

Total_cost = TotChl_cost + POC_cost (3)

where TotChl_cost represents the model-data misfits in total chlorophyll concentration.
(Note that for the model with a single phytoplankton size class Total_cost = Size_cost,
since in this case the size fractionated chlorophyll is identically equal to the total chloro-
phyll.) In this way, although for four of the five models Total_cost does not precisely
correspond to the cost that is minimized through the optimization process, it provides
a standard metric that can be used to rigorously compare the relative skill of all five
ecosystem models.
489
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2.4 Model implementation and assimilation experiments

The five ecosystem models were implemented in the framework described above at
nine locations in the Mid-Atlantic Bight (Fig. 1). Four of these sites were designated
as “Data Assimilation” (DA) sites, since these are the locations at which data were
assimilated. The remaining five sites were designated as “Cross Validation” (CV) sites,
since these were sites where the optimal parameters derived from assimilating data at
the DA sites were independently tested. Three experiments were conducted at these
nine sites, and are described in more detail below.

Expt. 1. Each model was implemented in a forward model run at all nine sites, and
a priori cost functions (both Size_cost and Total_cost) from these pre-assimilation sim-
ulations were computed.

Expt. 2. POC data and size fractionated chlorophyll data from the four DA sites were
assimilated into each of the five models to determine a single best-fit set of parameter
values for these four sites. The resulting cost functions (both Size_cost and Total_cost)
were computed both at the four DA sites, as well as at the five CV sites.

Expt. 3. To determine the robustness of the optimal parameters determined in Expt.
2 and the sensitivity of these parameter values to uncertainties associated with the
satellite-derived products, normally distributed random noise with a maximum ampli-
tude of 20 % was added to the size fractionated chlorophyll and POC data from the
four DA sites prior to assimilation. The resulting optimal parameter values were com-
pared to those determined in Expt. 2. Cost functions for the four DA and five CV sites
were computed as misfits between the simulations using these new optimal parameter
values and the noisy data.
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3 Results
3.1 Expt. 1: a priori simulation

All five a priori surface chlorophyll simulations from the five different models were com-
parable at most of the nine sites, in particular at the northern sites such as N1, N2,
CV1 and CV2 (Fig. 2a). More variability between models was found at the southern
sites and offshore sites. For example, the model estimates of the peak chlorophyll dur-
ing the Fall bloom ranged from 2 mg Chl m™° (the 2P1Z model) to > 5mg Chim™3 (the
3P2Z model) at the CV5 site. The 1P1Z model stood out from the other four models in
that it tended to produce slightly higher chlorophyll concentrations at most of the sites,
while it still gave similar estimates on the bloom timing as the other models (Fig. 2a).

In terms of size-fractions (not shown), the simulations generated by the 2P and the
3P models also resembled one another at most sites. For example, at all nine sites
ChIL concentrations remained low (< 10% of total chlorophyll) for most of the year
except during the spring and fall blooms. For the 3P models, model estimates of ChIM
were also considerably lower than ChlS throughout the year at all nine sites. For all 2P
and 3P models, ChlS was the dominant chlorophyll component throughout most of the
year.

Although all models failed to capture some key features of the surface chlorophyll dis-
tributions (Fig. 2a) such as bloom timing (e.g. at site DA_S1) and magnitude (e.g. at site
DA_N2), in general, all five models fit the satellite-derived surface total chlorophyll and
POC distributions similarly well. The general consistency in the five model simulations
resulted in the a priori cost functions of the five models being relatively comparable.
At both the DA sites (Table 3) and the CV sites (Table 4) the a priori Total_cost was
highest for the simplest 1P1Z model, primarily as a result of an overestimate of surface
chlorophyll at the DA_S2 site and the offshore CV3 site (Fig. 2a). The 3P models per-
formed only slightly better, as they significantly overestimated chlorophyll at the CV5
site near Cape Hatteras (Fig. 2a). In terms of reproducing the size fractionation data
(Size_cost), the 2P models performed best, regardless of whether or not they included

491

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
] >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/481/2014/bgd-11-481-2014-print.pdf
http://www.biogeosciences-discuss.net/11/481/2014/bgd-11-481-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

a second zooplankton component (Tables 3, 4). In terms of the 3P models, the model
with the second zooplankton component produced slightly lower a priori Size_costs.

3.2 Expt. 2: assimilation of satellite-derived data
3.2.1 Expt. 2 results at Data Assimilation (DA) sites

The assimilation of size differentiated chlorophyll and POC data at the four DA sites
resulted in significant reductions in Size_cost (Table 3) indicating successful optimiza-
tions for all five models. Improvements in model-data misfit were most substantial at
the two southern stations (DA_S1 and DA_S2) (Fig. 2b). As expected from the previ-
ous results of Xiao and Friedrichs (2014) this reduction in Size_cost was accomplished
primarily through improvements in chlorophyll model-data fit (Fig. 3a and b). The assim-
ilation particularly improved model-data misfit for the smallest size class of chlorophyll
for all five models. The 2Z models also produced improved model-data fits for other
size classes of chlorophyll, but this was not the case for the 1Z models.

Although Size_cost cannot be used to quantitatively compare the skill of all five mod-
els (see Sect. 2.3), it is still a useful metric for comparison of models with the same
numbers of phytoplankton variables. Somewhat surprisingly, Size_cost was lower (and
percent reduction in cost much greater) for models with only one zooplankton size
class, than for those with two zooplankton size classes. This effect was stronger for the
more complex 3P models than for the 2P models (Table 3).

In order to compare models with different phytoplankton structures, Total_cost was
computed to represent the model-data misfits of total chlorophyll and POC (Table 3;
Fig. 3c). After assimilation, Total_cost decreased for all models (mean decrease of
~ 30 %), which was only slightly smaller than the analogous decrease of Size_cost
(mean decrease of ~ 40 %). The lowest a posteriori costs were found with the simplest
1P and 2P models, and the highest cost was obtained using the most complex 3P2Z
model. The decrease in cost function was attained almost entirely through the decrease
in chlorophyll cost (mean decrease of ~ 55 %).
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Optimal parameters generated by the five models were all well constrained (Fig. 4a).
Out of the 29 optimized parameters for the five models, only seven of these represented
a change of greater than 50 %. Both 2Z models showed only minor changes in param-
eter values, whereas the three 1Z models all had at least one parameter that changed
by more than 50 %. The large changes in parameter values for these 1Z models are
consistent with the largest reductions in costs for these models, as discussed above.
However, the 2P2Z model fit the total chlorophyll data (Total_cost = 11.2) nearly as well
as the 2P1Z model (Total_cost = 10.8), despite much smaller changes to the a priori
parameter values. Specifically, the superior fit of the 2P1Z model was obtained only
when the maximum Chl : C ratio for micro-phytoplankton was unrealistically reduced
by an order of magnitude.

Among the three types of optimized parameters, the maximum phytoplankton growth
rate was adjusted the least by the optimization, suggesting that these parameters were
initialized near their optimal values. Greater variations in optimal values were found
with the other parameters, without any clear patterns forming as a function of model
structure.

3.2.2 Expt. 2 results at Cross Validation (CV) sites

By definition, the data assimilation improved model skill at the DA sites (Table 3) where
the data were assimilated; however a more robust test of the optimization is to evaluate
the optimized models against data at the CV sites (Table 4) where no data were assimi-
lated (Gregg et al., 2009). When the optimal parameter sets obtained from assimilating
the data at the DA sites were applied to another five nearby sites (CV sites in Fig. 1),
Size_cost was reduced for all models except the 2P1Z model (Table 4, Fig. 5a and b).
The greatest reductions in Size_cost at the CV sites occurred for the 3P1Z and 1P1Z
models (~ 40 %), which was equivalent to the reductions in Size_cost generated by
these models at the DA sites. Significant, but smaller, reductions also occurred for
the 2P2Z and 3P2Z models (~ 20 %; Table 4). All five models showed an increase in
the POC cost, however the improvement in model-data fit for size-fractionated chloro-
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phyll, particularly for the smallest chlorophyll size class, more than compensated for
the deterioration in POC model-data misfit in all cases except for the 2P1Z model
(Fig. 5a and b).

Applying the optimal parameters from the DA sites to simulations at the CV sites
also generated significant improvements in the total chlorophyll cost for each of the
five models (Fig. 5c). This decrease in total chlorophyll cost was again substantially
larger than the increase in POC cost for all models except the 2P1Z model, and thus
the overall Total_cost also decreased for four of the five models (Table 4). The lack
of improvement for the 2P1Z model is at least partially due to the fact that using the
a priori parameter values with the 2P1Z model generated an a priori simulation that
fit the data at the five CV sites very well (Fig. 5c). In fact the a priori Total_cost for
the 2P1Z model was lower than the a posteriori Total_cost of the 1P and 3P models
(Table 4, Fig. 5¢). Overall, the intermediately complex 2P2Z model produced the lowest
Total_cost when using the parameters optimized for the DA sites at the CV sites.

3.3 Expt. 3: assimilation of perturbed data
3.3.1 Expt. 3 results at Data Assimilation (DA) sites

The a priori costs for Expt. 3 were computed as the difference between the a priori
simulations and the noisy data, and were only very slightly different (< 1 %) from the
a priori costs for Expt. 2, which were computed as the difference between the a priori
simulations and the actual data.

When the noisy data were assimilated into the models at the four DA sites in Expt. 3,
the optimization process generated very similar parameters to those generated in Expt.
2 for the 1P, 2P and 3P1Z models (Fig. 4). Thus the addition of random noise did not
significantly affect the optimization process for these simpler models, and as a result
the a posteriori Size_costs resulting from the assimilation of the noisy data were almost
identical to those generated by assimilating the actual data (Fig. 3).
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In contrast, the optimal parameters generated in Expt. 3 for the most complex 3P2Z
model were significantly different from those in Expt. 2 (Fig. 4b). For example, the op-
timal value for the maximum Chl: C ratio for pico-phytoplankton in the 3P2Z model
was 6.1x 107" mg ChImgC‘1 compared to a value of 0.023 generated when assim-
ilating the actual satellite-derived data. As a result, this new set of optimal parameter
values (Fig. 4b) resulted in a significantly different Size_cost (~ 35 % decrease). This
decrease in the 3P2Z Size_cost was caused by a substantial reduction in the cost com-
ponents of ChlS and ChIM, whereas the contribution of ChiL and POC remained nearly
unchanged (Fig. 3b).

3.3.2 Expt. 3 results at Cross Validation (CV) sites

The costs at the CV sites for the 1P, 2P and 3P1Z models were nearly identical for
Expt. 2 and 3 (Fig. 5). This was true despite some significant changes in the optimized
parameter values for the 3P1Z model (Fig. 4), e.g., the zooplankton basal metabolism
rate was twice as high in Expt. 3 compared to Expt 2. As was the case at the DA
sites, the 3P2Z a posteriori costs were much more sensitive to the noise added to the
data prior to assimilation. Although the a posteriori 3P2Z Size_cost decreased for the
ChIS and ChIM components, the a posteriori Total_cost increased due to a significant
deterioration in the model-data fit for POC.

In summary, the addition of noise to the assimilated data had almost no effect on the
cost functions for the simpler models, but significantly affected the costs of the most
complex (3P2Z) model. Although the 3P2Z model showed improvement in model-data
misfit at the DA sites with the addition of noise prior to assimilation, it was attained at
the expense of unreasonable optimized parameter values and a deterioration in the
Total_cost at the independent cross validation sites.
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4 Discussion and conclusions

In this study, five lower trophic level ecosystem models with varying food web complex-
ities were rigorously compared, in order to determine how the number of phytoplank-
ton and zooplankton compartments affects the ability of a lower trophic level model
to reproduce observed patterns in surface chlorophyll and particulate organic carbon.
All five models were embedded in a 1-D assimilative model framework with identical
physics and biogeochemical formulations, and thus the differences in the model sim-
ulations were only a result of variations in the complexity of the planktonic food web
structure.

As expected based on previous studies assimilating satellite-derived data fields into
marine ecosystem models (Fan and Lv, 2009; Friedrichs, 2002; Garcia-Gorriz et al.,
2003; Hemmings et al., 2004; Tjiputra et al., 2007), all models tested here showed
improvement in model skill after the assimilation of the satellite-derived fields and re-
sulting optimization of the plankton-related parameters. Whereas prior to assimilation
the five models varied somewhat in their ability to fit the satellite-derived data fields,
after assimilation the models produced total chlorophyll and POC fields at the assimi-
lation sites that matched the satellite data nearly equally well.

Interestingly, the a posteriori parameters optimized for these five models were very
different for the different models. In particular, the models with a single zooplankton size
class were only able to reproduce the assimilated data using extremely low zooplankton
basal metabolism rates, or extremely low maximum Chl : C ratios, whereas the models
with two zooplankton size classes were able to reproduce the POC and chlorophyll
observations using realistic rates and ratios. Ultimately, the parameters optimized for
the two phytoplankton, two zooplankton (2P2Z) model were most similar to our best-
guess a priori initial parameter values.

The improvements in model skill for all five models were not limited to the four spe-
cific sites where the data were assimilated. Rather, a cross validation analysis demon-
strated that the parameters optimized for these four sites within the Mid-Atlantic Bight
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improved the simulations at a number of other sites throughout the region, giving us
confidence in the portability of these optimized parameter values, and optimism for
the potential success of using these parameters in a three-dimensional simulation of
the US eastern continental shelf (McDonald et al., 2012). Although almost all models
showed some degree of improvement at these other MAB sites, once again the model
characterized by intermediate complexity, i.e. 2P2Z, performed best. The other models
were able to fit the data at the assimilation sites equally as well as the 2P2Z model;
however, they typically did so by using unrealistic parameter values which were not
portable to other areas of the Mid-Atlantic Bight.

Intriguing results were also obtained when random noise was added to the satellite-
derived data prior to assimilation. The addition of the noise perturbation had almost no
effect on the values of the optimized parameters for the simplest four models, suggest-
ing that the optimization process was robust for these models, even when significant
noise was present in the assimilated data. On the contrary, when these perturbed data
were assimilated into the most complex model (the 3P2Z model), substantially different
optimal parameter values were obtained. For certain parameters (e.g., the maximum
Chl: C ratio for pico-phytoplankton), the difference between the optimized parameter
values obtained by assimilating the actual data vs. those obtained by assimilating the
noisy data was more than ten orders of magnitude. Although the new parameter val-
ues obtained by assimilating the noisy data improved the model-data fit at the specific
sites where the data were assimilated, the unrealistic parameter values deteriorated
the model performance at other sites within the MAB. In essence, unlike the simpler
models, the most complex model had enough flexibility that it was actually able to fit
the additional noise artificially added to the data. Although this “over-tuning” actually
improved the model-data fit at the sites where the noisy data were assimilated, this is
a dangerous outcome, as the model-data fit was degraded at other locations within the
MAB where data were not available for assimilation.

This over-tuning issue for complex models has been alluded to in previous studies.
For example, Friedrichs et al. (2006) assimilated data during three seasons of the year,
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and cross-validated the resulting optimal parameters against the data in the remaining
season. Their cross-validation experiments showed that complex models with too many
unconstrained parameters might be able to fit the assimilated data extremely well (the
more free parameters the better the fit to the assimilated data), yet these complex
models would have poor predictive ability (the more free parameters the worse the fit
to independent, unassimilated data).

Another difficulty with complex models is that they are usually governed by such
a large number of parameters (the number of parameters that must be specified in
a given ecosystem model generally increases by as much as the square of the number
of state variables, Denman, 2003), that it is very difficult to identify the best-fit set of pa-
rameters. When hand-tuning such models, there are just too many different parameters
to adequately test all parameter combinations. When applying an automated parame-
ter optimization method such as the variational adjoint method to complex models with
multiple unconstrained parameters, the cost function has a tendency to get stuck in
suboptimal “local minima” and as a result the absolute global cost function minimum
and the true “best-fit” set of parameters potentially can never be identified. In fact, this
is exactly what occurred in the present study for the most complex 3P2Z model. The
a posteriori cost function was highest for this model, despite the presumably increased
flexibility that this model had to fit the data, because the cost function became stuck
in a local minimum. However, when artificial noise was added to the data prior to as-
similation, an alternate local cost function minimum was identified, which, somewhat
surprisingly, was smaller than the one identified when the true data were assimilated.
The problem of complex models becoming stuck in local cost function minima has also
been discussed by others. For example, Ward et al. (2010) demonstrated that when
too many unconstrained parameters were optimized, the cost function often became
trapped in a local minimum; however, reducing the number of optimized parameters
partially eliminated this problem.

Our conclusion that an intermediate complexity model is the most ideally suited for
regional ecosystem studies is consistent with results from earlier studies using other
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types of models without the formal parameter optimization techniques employed here.
For example, an early study by Costanza and Sklar (1985) rated eighty-seven models
in wetland and shallow water bodies in terms of three indices: articulation (the complex-
ity of the model), accuracy (goodness-of-fit of the model to the data) and effectiveness
(trade-off between complexity and accuracy). They concluded that although the accu-
racy seemed to increase with articulation, the maximum effectiveness was found at an
intermediate level of complexity. Fulton et al. (2003) found a similar humped relation-
ship between model complexity and performance when examining end-to-end (nutrient
to fisheries) models, demonstrating that the best performance was produced by the
model with intermediate complexity. Another model comparison study was conducted
by Raick et al. (2006), in which three simplified pelagic ecosystem models with sixteen,
nine and four state variables, respectively, were assessed according to their ability to
reproduce simulations from performance of a complex model with nineteen state vari-
ables. The study found that although the simplest model (four state variables) was able
to capture the key features demonstrated by the complex model, the model with inter-
mediate complexity (nine state variables) most closely reproduced the output from the
full 19 state-variable model.

In summary, the study presented here provides additional evidence that lower trophic
level food web models of intermediate complexity (e.g. containing two phytoplankton
and two zooplankton compartments) are most likely to be able to provide best esti-
mates of chlorophyll and carbon concentrations on regional scales such as the US
eastern continental shelf. Simple models with only a single zooplankton size class may
be able to reproduce observed data fields, but typically can only do so using unrealistic
parameters that are not portable throughout the region. On the contrary, more complex
models have difficulty finding cost minima and have issues with over-tuning and artifi-
cially fitting data noise, making them potentially unsuitable for extrapolating to locations
and times where/when data may not be available for assimilation.

499

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
] >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/481/2014/bgd-11-481-2014-print.pdf
http://www.biogeosciences-discuss.net/11/481/2014/bgd-11-481-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

Appendix A

Model equations

The equations for each of the five models are included below for reference. In
each case, the specific equations for phytoplankton growth rate (i), zooplankton
grazing rate (g), nitrification rate (n) and the variable ratio of chlorophyll to phy-
toplankton biomass (Chl) are provided in Fennel et al. (2006). State variables
are defined as: P =total phytoplankton, Z =total zooplankton, SD =small detritus,
LD = large detritus, NO3 = nitrate, NH4 = ammonium, Chl = chlorophyll, SP = small phy-
toplankton, MP = medium phytoplankton, LP =large phytoplankton, SZ =small zoo-
plankton, MZ = medium zooplankton, LZ = large zooplankton, ChIS = small chlorophyll,
ChIM = medium chlorophyll, ChiL =large chlorophyll. Parameter values, except for
those specifically noted in text, are provided in Fennel et al. (2006, 2008).
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Table 1. Key parameters that differentiate the phytoplankton (P) and zooplankton (Z) size
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: : . Effects of increasing
Parameter Unit P size class 1P1Z 2P1Z 2P2Z 3P1Z 3P2Z - the complexity of the
Maximum Chl: C ratio mgChImgC‘1 Small 0.05 0.03 0.03 0.03 0.03 planktonic food web
Medium 0.05 0.05 v}
Large 0.06 0.06 0.06 0.06 o i
9 o Y. Xiao and
Half saturation for NO, uptake  mmolNm™ Small 0.5 1.0 1.0 1.0 1.0 73 M. A. M. Friedrichs
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Large 1.5 1.5 2.0 2.0 o
)
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Table 2. Number of observations (N), mean and standard deviation (o) of the satellite-
derived chlorophyll concentrations (small, medium, large and total, mgChIm’S) and POC data

(mgC m~°) at each site.

Chis ChiM ChiL Total Chl POC

N mean o mean o mean o mean o N mean o
DA_N1 108 0.03 002 038 030 022 023 063 052 119 134 48
DA_N2 90 0.03 001 028 036 0.16 031 048 067 94 112 78
DA_S1 122 0.04 002 040 033 024 025 068 057 124 140 54
DA_S2 121 0.083 002 030 026 0.16 0.17 049 043 124 109 48
CV1 116 0.03 002 033 041 021 040 057 081 123 124 52
cv2 104 0.03 0.01 028 030 0.16 027 046 056 111 100 52
Cv3 94 0.083 001 020 0.15 0.11 0.12 0.33 0.27 100 95 52
Ccv4 108 0.04 003 084 074 057 072 146 144 118 219 66
CV5 120 0.04 0.02 056 042 033 028 093 0.68 100 95 52
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Table 3. Cost functions (Size_cost and Total_cost) computed at the four DA sites in Expt. 2,
using initial parameter values (i.e. a priori cost) and optimal parameter values obtained from
the assimilation of satellite-derived size-fractionated chlorophyll and POC data at the four DA

sites (i.e. a posteriori cost).

Size_cost Total_cost
a priori  a posteriori Y% a priori  a posteriori Y%
cost cost change cost cost change
1P1Z 22.0 11.6 -47 % 22.0 11.6 -47 %
2P1Z 15.1 9.4 -37% 13.3 10.8 -19%
2P27 14.9 10.9 —-26 % 12.8 11.2 -12%
3P1Z 22.8 8.5 -63 % 20.0 12.4 -38%
3P2Z 19.5 13.9 -29% 20.1 15.8 -21%
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Table 4. Cost functions (Size_cost and Total_cost) computed at the five independent CV sites in
Expt. 2, using initial parameter values (i.e. a priori cost) and optimal parameter values obtained
from the assimilation of satellite-derived size-fractionated chlorophyll and POC data at the four

DA sites (i.e. a posteriori cost).

Size_cost Total_cost
a priori  a posteriori Y% a priori  a posteriori Y%
cost cost change cost cost change
1P1Z 36.4 21.0 -42 % 36.4 21.0 -42%
2P1Z 17.2 17.2 0% 18.9 21.3 +13%
2P27 17.3 14.0 -19% 27.2 15.3 -43%
3P1Z 23.7 13.5 -43% 32.7 22.2 -32%
3P27 19.4 16.0 -17% 34.7 20.4 -1 %
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Fig. 1. Locations of the nine study sites in the Mid-Atlantic Bight. The red crosses represent
the four data assimilation (DA) sites, and the black pluses the five cross validation (CV) sites.
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(a) A priori simulation
DA_N1 DA_N2 DA_S1

o sat
—1P1z
—2PiZ
—2r2z
——3pP1Z
——3p2z

Daily mean Chl (mg/l)

(b) A posteriori simulation
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Fig. 2. Time series of total surface chlorophyll from the satellite-derived data (open black circles)
and the (a) a priori and (b) a posteriori simulations (lines) at the nine study sites for the five

ecosystem models.

Daily mean Chl (mg/l)
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Fig. 3. Cost functions at the four DA sites: (a) Size_cost for the 2P models; (b) Size_cost for
the 3P models and (c) Total_cost for all five models. The three bars (from left to right) for each
model represent the costs obtained for Expt. 1 (a priori cost), Expt. 2 (a posteriori cost) and
Expt. 3 (a posteriori case with noise), respectively. Colors represent the various components
(total chlorophyll, size-fractionated chlorophyll and POC) of these costs.
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Fig. 4. Optimized parameter values normalized to a priori values obtained (a) by assimilating
POC and size-fractionated data at the 4 DA sites (Expt. 2), and (b) by assimilating satellite data
to which 20 % random noise has been added (Expt. 3).
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Fig. 5. Cost functions at the five CV sites: (a) Size_cost for the 2P models; (b) Size_cost for
the 3P models and (c) Total_cost for all five models. The three bars (from left to right) for each
model represent the costs obtained for Expt. 1 (a priori cost), Expt. 2 (a posteriori cost) and
Expt. 3 (a posteriori case with noise), respectively. Colors represent the various components
(total chlorophyll, size-fractionated chlorophyll and POC) of these costs.
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